{11,18,25,32}

Next three terms $\{11,18,25,32,39,46,53\}$

Note: 32-25 = 7

$$25-18 = 7$$

$$18-11 = 7$$

This means that this sequence can be written as an arithmetic sequence

$$d = 7$$

$$a_1 = 11$$

Arithmetic Sequence $a_n = a_1 + (n-1)d$

$$=11+(n-1)(7)$$

Explicit Form of this Sequence

$$a_n = 11 + 7n - 7$$

$$a_n = 4 + 7n$$

4	A seq_1	B
=		
1	11	
2	18	
3	25	
4	32	
5		
6		
7		
8		
9		
10		
11		
<		\ \ \ \
<u>A1</u>	11	

finding
$$a_{100}$$
 given that $a_n=11+(n-1)(7)$

$$a_{100}=11+(100-1)(7)$$

$$=704$$

finding
$$a_{100}$$
 given that $a_n = 4+7n$

$$a_{100} = 4+(7)(100)$$

$$= 704$$

now you CAN write an arithmetic sequence as a recursive sequence, but arithmetic is easier!

$$a_1 = 11$$

$$a_{n+1} = a_n + 7$$

Problem 2

 $\{729,243,81,27\}$ Including the next three terms $\{729,243,81,27,9,3,1\}$

Note:
$$\frac{243}{729} = \frac{1}{3}$$
 $\frac{81}{243} = \frac{1}{3}$ $\frac{27}{81} = \frac{1}{3}$

$$\frac{81}{243} = \frac{1}{3}$$

$$\frac{27}{81} = \frac{1}{3}$$

This means that this sequence can be written as a geometric sequence

$$r = \frac{1}{3}$$

$$a_1 = 729$$

 $r = \frac{1}{3}$ $a_1 = 729$ Geometric Sequence $a_n = a_1 \cdot r^{n-1}$

$$=729 \cdot \left(\frac{1}{3}\right)^{n-1}$$

Explicit Form of this Sequence

$$a_{n} = 729 \cdot \left(\frac{1}{3}\right)^{n-1}$$

$$a_{n} = 3^{6} \cdot \left(3^{-1}\right)^{n-1}$$

$$= 3^{6} \cdot \left(3^{-n+1}\right)$$

$$= 3^{-n+7} = 2187 \cdot 3^{-n}$$

•	A seq_1	В	
ш			
1	729		
2	243		
3	81		
4	27		
5			
6			
7			
8			
9			
10			
11			
<		 }	~
A1	729	ک د	

finding
$$a_9$$
 given that $a_n=729\left(\frac{1}{3}\right)^{n-1}$

$$a_{9}=729\left(\frac{1}{3}\right)^{9-1}$$

$$(1)^{8}$$

$$=\frac{729}{6561}=\frac{1}{9}$$

now you CAN write an geometric sequence as a recursive sequence, but geometic is easier!

$$a_1 = 729$$

$$a_{n+1} = \frac{1}{3}a_n$$

Problem 3

$$\left\{\frac{1}{3}, \frac{-1}{9}, \frac{1}{27}, \frac{-1}{81}\right\}$$

Including the next three terms $\left\{ \frac{1}{3}, \frac{-1}{9}, \frac{1}{27}, \frac{-1}{81}, \frac{1}{243}, \frac{-1}{729}, \frac{1}{2187} \right\}$

Note:
$$\frac{\frac{-1}{9}}{\frac{1}{3}} = \frac{\frac{1}{27}}{3} = \frac{\frac{-1}{3}}{\frac{1}{27}} = \frac{\frac{-1}{3}}{\frac{1}{27}} = \frac{\frac{-1}{3}}{\frac{1}{27}}$$

This means that this sequence can be written as a geometric sequence

$$r = \frac{-1}{3}$$
 $a_1 = \frac{1}{3}$ Geometric Sequence $a_n = a_1 \cdot r^{n-1}$

$$=\frac{1}{3}\cdot\left(\frac{-1}{3}\right)^{n-1}$$

49	A seq_1 B	^
_	/\ 3Cq_1	1
=		
1	1/3	
2	-1/9	
3	1/27	
4	-1/81	
5		
6		
7		
8		
9		
10		
1 1 (\	<u>~</u>
A1	$\frac{1}{3}$	

finding
$$a_{10}$$
 given that $a_{10} = \frac{1}{3} \left(\frac{-1}{3} \right)^{n-1}$

$$a_{10} = \frac{1}{3} \left(\frac{-1}{3} \right)^{10-1}$$

$$= \frac{1}{3} \left(\frac{-1}{3} \right)^{9}$$

$$= \frac{-1}{59049}$$

now you CAN write an geometric sequence as a recursive sequence, but geometic is easier!

$$a_1 = \frac{1}{3}$$

$$a_{n+1} = \frac{-1}{3} a_n$$

Problem 4

 $\{7,9,12,16,21\}$ Including the next three terms $\{7,9,12,16,21,27,34,42\}$

$$\frac{12}{9} = \frac{4}{3}$$

$$\frac{16}{12} = \frac{4}{3}$$

$$\frac{21}{16} = \frac{21}{16}$$

Note: 9-7=2 12-9=3 16-12=4 21-16=5

$$12-9 = 3$$

$$16-12 = 4$$

$$21-16 = 5$$

So this does not have a common ratio or a common difference

This means that this sequence cannot be written as a geometric or an arithmetic sequence

So we must write a different type of sequence, recursive sequence

$$a_1 = 7$$

 $a_{n+1} = n+1+a_n$ (this means add the number of term plus 1 to the previous term)

•	4	В	С	D	E	F	G	8	
=								9	
1		a1	a2	a3	a4	a5		10	
2	a_n	7	9	12	16	21		11	
(_	_	_	_	▽	<	>