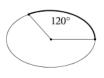
Problem 1

d=3 inches

You have a paint roller that has a diameter of 3 inches. You push the roller against the wall and it travels 120°

1) Number of revolutions

$$\frac{120}{360} \rightarrow \frac{1}{3}$$
 number of revolutions = $\frac{1}{3}$


2) Measure of the angle in radians

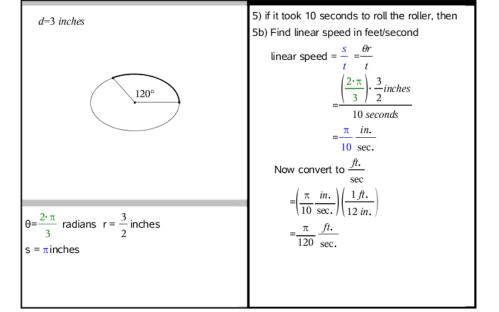
$$120 \cdot \frac{\pi}{180} \cdot \frac{2 \cdot \pi}{3}$$
 so $\theta = \frac{2 \cdot \pi}{3}$ radians

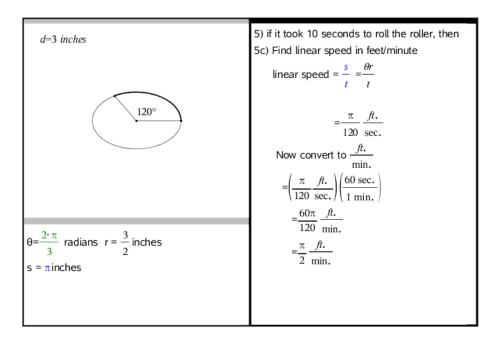
3) Length of of the arc

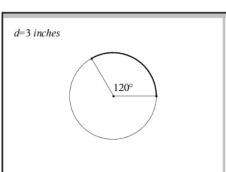
$$s = \theta r$$
 so $s = \left(\frac{2 \cdot \pi}{3}\right) \left(\frac{3}{2}\right) = \pi$ inches

4) Amount of paint coverage linearly πinches ≈3.142 inches d=3 inches

$$\theta = \frac{2 \cdot \pi}{3}$$
 radians $r = \frac{3}{2}$ inches
s = π inches


5) if it took 10 seconds to roll the roller, then


5a) Find linear speed in inches/second


linear speed =
$$\frac{s}{t} = \frac{\theta r}{t}$$

$$= \frac{\left(\frac{2 \cdot \pi}{3}\right) \cdot \frac{3}{2} inches}{10 seconds}$$

$$=\frac{\pi}{10}\frac{in.}{\text{sec.}}$$

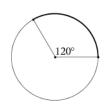
$$\theta = \frac{2 \cdot \pi}{3} \text{ radians } r = \frac{3}{2} \text{ inches } s = \pi \text{ inches}$$

$$\text{Linear speed} = \frac{\pi}{10} \frac{in.}{\text{sec.}}$$

$$= \frac{\pi}{120} \frac{ft.}{\text{sec.}}$$

$$= \frac{\pi}{2} \frac{ft.}{\text{min.}}$$

6) if it took 10 seconds to roll the roller, then 6a) Find angular speed in radians per second


angular speed =
$$\frac{\theta}{t}$$

$$= \frac{\frac{2 \cdot \pi}{3}}{10} \frac{radians}{sec.}$$

$$= \frac{2 \cdot \pi}{3} \cdot \frac{1}{10} \frac{radians}{sec.}$$

$$= \frac{\pi}{15} \frac{radians}{sec.}$$

d=3 inches

$$\theta = \frac{2 \cdot \pi}{3}$$
 radians $r = \frac{3}{2}$ inches $s = \pi$ inches

Linear speed =
$$\frac{\pi}{10} \frac{in}{\text{sec.}}$$

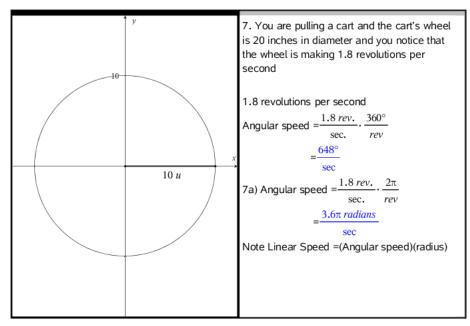
$$= \frac{\pi}{120} \frac{ft.}{\text{sec.}} = \frac{\pi}{2} \frac{ft.}{\text{min.}}$$

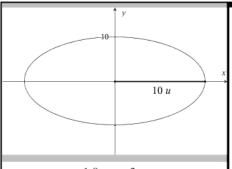
Angular speed = $\frac{\pi}{15} \frac{radians}{sec.}$

6) if it took 10 seconds to roll the roller, then 6a) Find angular speed in radians per minute

angular speed =
$$\frac{\theta}{t}$$

$$= \frac{\pi}{15} \frac{radians}{sec.}$$


radians Now convert to minute

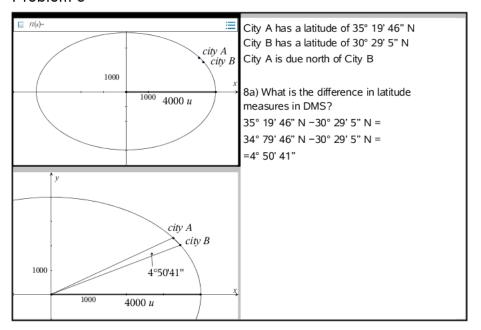

$$= \left(\frac{\pi}{15} \frac{radians}{\text{sec.}}\right) \left(\frac{60 \text{ sec.}}{1 \text{ min.}}\right)$$
$$= \frac{60\pi}{10} \frac{radians}{100}$$

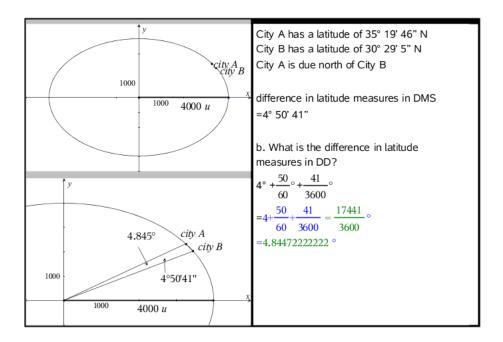
$$=4 \cdot \pi \frac{radians}{\cdot}$$

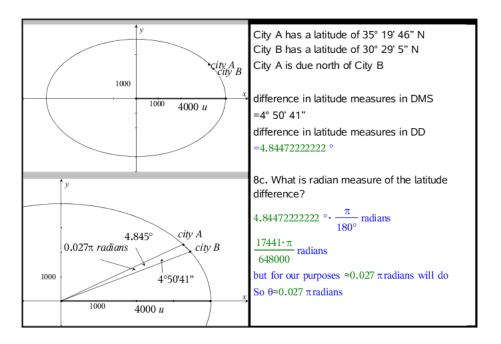
$$=4\cdot\pi\frac{radians}{\min}$$

Problem 2

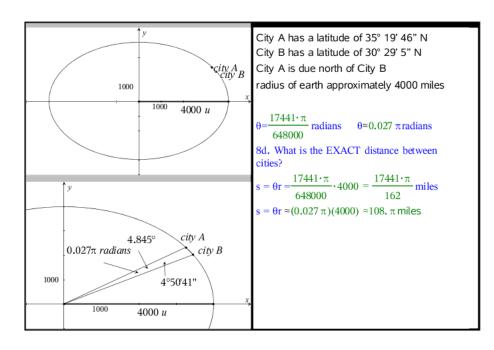
Angular speed = $\frac{1.8 \ rev.}{\text{sec.}} \cdot \frac{2\pi}{rev}$

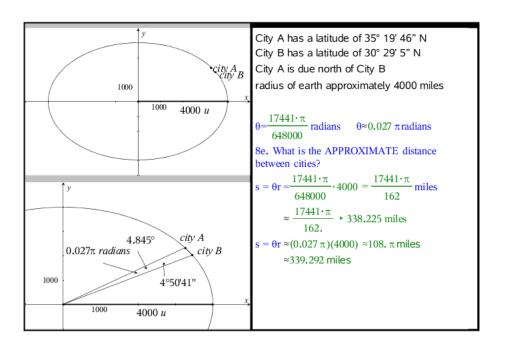

$$\theta = 3.6 \cdot \pi \ radians \quad r = \frac{20}{2} = 10 \text{ inches}$$


7. You are pulling a cart and the cart's wheel is 20 inches in diameter and you notice that the wheel is making 1.8 revolutions per second


Linear Speed =
$$\frac{\theta r}{t} = \frac{3.6 \cdot \pi \cdot 10 \ in.}{1 \ \text{sec.}}$$

= $\frac{36 \cdot \pi \ in.}{1 \ \text{sec}}$
 $\approx 113.097 \ \frac{in.}{\text{sec.}}$


Note Linear Speed =(Angular speed)(radius)


Problem 3

