

You have a paint roller that has a diameter of 3 inches. You push the roller against the wall and it travels 120°

1) Number of revolutions

$$\frac{120}{360} \rightarrow \frac{1}{3}$$
 number of revolutions = $\frac{1}{3}$

2) Measure of the angle in radians

$$120 \cdot \frac{\pi}{180} \cdot \frac{2 \cdot \pi}{3} \quad \text{so } \theta = \frac{2 \cdot \pi}{3} \text{ radians}$$

3) Length of of the arc

$$s = \theta r$$
 so $s = \left(\frac{2 \cdot \pi}{3}\right) \left(\frac{3}{2}\right) = \pi \text{ inches}$

4) Amount of paint coverage linearly π inches ≈3.142 inches

$$\theta = \frac{2 \cdot \pi}{3}$$
 radians $r = \frac{3}{2}$ inches

$$s = \pi inches$$

5) if it took 10 seconds to roll the roller, then 5a) Find linear speed in inches/second

linear speed =
$$\frac{s}{t} = \frac{\theta r}{t}$$

$$= \frac{\left(\frac{2 \cdot \pi}{3}\right) \cdot \frac{3}{2} inches}{10 \ seconds}$$

$$= \frac{\pi}{10} \frac{in}{sec}$$

$$\theta = \frac{2 \cdot \pi}{3}$$
 radians $r = \frac{3}{2}$ inches

$$s = \pi inches$$

5) if it took 10 seconds to roll the roller, then 5b) Find linear speed in feet/second

linear speed =
$$\frac{s}{t} = \frac{\theta r}{t}$$

$$= \frac{\left(\frac{2 \cdot \pi}{3}\right) \cdot \frac{3}{2} inches}{10 \ seconds}$$

$$= \frac{\pi}{10} \frac{in}{sec}$$

Now convert to
$$\frac{ft.}{\text{sec}}$$

$$= \left(\frac{\pi}{10} \frac{in.}{\text{sec.}}\right) \left(\frac{1 \, ft.}{12 \, in.}\right)$$

$$= \frac{\pi}{120} \frac{ft.}{\text{sec}}$$

$$\theta = \frac{2 \cdot \pi}{3}$$
 radians $r = \frac{3}{2}$ inches

$$s = \pi$$
 inches

- 5) if it took 10 seconds to roll the roller, then 5c) Find linear speed in feet/minute
- s hinspace heta r

linear speed =
$$\frac{s}{t} = \frac{\theta r}{t}$$

$$=\frac{\pi}{120} \frac{ft.}{\text{sec.}}$$

Now convert to $\frac{ft}{\min}$.

$$= \left(\frac{\pi}{120} \frac{ft.}{\text{sec.}}\right) \left(\frac{60 \text{ sec.}}{1 \text{ min.}}\right)$$

$$=\frac{60\pi}{120}\frac{ft.}{\min}$$

$$=\frac{\pi}{2}\frac{ft}{\min}$$

$$\theta = \frac{2 \cdot \pi}{3}$$
 radians $r = \frac{3}{2}$ inches $s = \pi$ inches

Linear speed =
$$\frac{\pi}{10} \frac{in.}{\text{sec.}}$$

$$= \frac{\pi}{120} \frac{ft.}{\text{sec.}}$$

$$=\frac{\pi}{2}\frac{ft}{\min}.$$

- 6) if it took 10 seconds to roll the roller, then
- 6a) Find angular speed in radians per second

angular speed =
$$\frac{\theta}{t}$$

$$= \frac{2 \cdot \pi}{3} \frac{radians}{sec.}$$

$$= \frac{2 \cdot \pi}{3} \cdot \frac{1}{10} \frac{radians}{sec.}$$

$$= \frac{\pi}{15} \frac{radians}{sec.}$$

$$\theta = \frac{2 \cdot \pi}{3}$$
 radians $r = \frac{3}{2}$ inches $s = \pi$ inches

Linear speed =
$$\frac{\pi}{10} \frac{in}{\text{sec.}}$$

$$= \frac{\pi}{120} \frac{ft}{\text{sec.}} = \frac{\pi}{2} \frac{ft}{\text{min.}}$$

Angular speed =
$$\frac{\pi}{15} \frac{radians}{sec.}$$

- 6) if it took 10 seconds to roll the roller, then
- 6a) Find angular speed in radians per minute

angular speed =
$$\frac{\theta}{t}$$

= $\frac{\pi}{15} \frac{radians}{sec.}$

Now convert to $\frac{radians}{}$

minute
$$= \left(\frac{\pi}{15} \frac{radians}{\text{sec.}}\right) \left(\frac{60 \text{ sec.}}{1 \text{ min.}}\right)$$

$$= \frac{60\pi}{15} \frac{radians}{\text{min}}$$

$$= 4 \cdot \pi \frac{radians}{\text{min}}$$

- 7. You are pulling a cart and the cart's wheel is 20 inches in diameter and you notice that the wheel is making 1.8 revolutions per second
- 1.8 revolutions per second

Angular speed =
$$\frac{1.8 \text{ rev.}}{\text{sec.}} \cdot \frac{360^{\circ}}{\text{rev}}$$

= $\frac{648^{\circ}}{\text{sec}}$

7a) Angular speed =
$$\frac{1.8 \text{ rev.}}{\text{sec.}} \cdot \frac{2\pi}{\text{rev}}$$

= $\frac{3.6\pi \text{ radians}}{\text{sec}}$

Note Linear Speed =(Angular speed)(radius)

Angular speed =
$$\frac{1.8 \text{ rev.}}{\text{sec.}} \cdot \frac{2\pi}{\text{rev}}$$

= $\frac{3.6\pi \text{ radians}}{\text{sec}}$
 $\theta = 3.6 \cdot \pi \text{ radians}$ $r = \frac{20}{2} = 10 \text{ inches}$

7. You are pulling a cart and the cart's wheel is 20 inches in diameter and you notice that the wheel is making 1.8 revolutions per second

Linear Speed =
$$\frac{\theta r}{t} = \frac{3.6 \cdot \pi \cdot 10 \ in.}{1 \ \text{sec.}}$$

= $\frac{36 \cdot \pi \ in.}{1 \ \text{sec}}$
 $\approx 113.097 \ \frac{in.}{\text{sec.}}$

Note Linear Speed =(Angular speed)(radius)

City A has a latitude of 35° 19' 46" N City B has a latitude of 30° 29' 5" N City A is due north of City B

8a) What is the difference in latitude measures in DMS?

City A has a latitude of 35° 19' 46" N City B has a latitude of 30° 29' 5" N City A is due north of City B

difference in latitude measures in DMS =4° 50' 41"

b. What is the difference in latitude measures in DD?

$$4^{\circ} + \frac{50}{60}^{\circ} + \frac{41}{3600}^{\circ}$$

$$= 4 + \frac{50}{60} + \frac{41}{3600} = \frac{17441}{3600}^{\circ}$$

$$= 4.844722222222^{\circ}$$

City A has a latitude of 35° 19' 46" N City B has a latitude of 30° 29' 5" N City A is due north of City B

difference in latitude measures in DMS =4° 50' 41"

difference in latitude measures in DD =4.84472222222 °

8c. What is radian measure of the latitude difference?

4.84472222222 °
$$\cdot \frac{\pi}{180^{\circ}}$$
 radians

$$\frac{17441 \cdot \pi}{648000}$$
 radians

but for our purposes $\approx 0.027 \,\pi \, radians$ will do So $\theta \approx 0.027 \,\pi \, radians$

$$\theta = \frac{17441 \cdot \pi}{648000}$$
 radians $\theta \approx 0.027 \pi$ radians

8d. What is the EXACT distance between cities?

$$s = \theta r = \frac{17441 \cdot \pi}{648000} \cdot 4000 = \frac{17441 \cdot \pi}{162}$$
 miles

$$s = \theta r \approx (0.027 \pi)(4000) \approx 108. \pi \text{ miles}$$

$$\theta = \frac{17441 \cdot \pi}{648000}$$
 radians $\theta \approx 0.027 \pi$ radians

8e. What is the APPROXIMATE distance between cities?

$$s = \theta r = \frac{17441 \cdot \pi}{648000} \cdot 4000 = \frac{17441 \cdot \pi}{162} \text{ miles}$$

$$\approx \frac{17441 \cdot \pi}{162} \cdot 338.225 \text{ miles}$$

$$s = \theta r \approx (0.027 \pi)(4000) \approx 108. \pi \text{ miles}$$

 $\approx 339.292 \text{ miles}$

8e. What is the APPROXIMATE distance between cities?

$$s = \theta r = \frac{17441 \cdot \pi}{648000} \cdot 4000 = \frac{17441 \cdot \pi}{162} \text{ miles}$$

$$\approx \frac{17441 \cdot \pi}{162} = 338.225 \text{ miles}$$

 $s = \theta r \approx (0.027 \pi)(4000) \approx 108. \pi \text{ mile}$ $\approx 339.292 \text{ miles}$

8e. What is the APPROXIMATE distance between cities?

$$s = \theta r = \frac{17441 \cdot \pi}{648000} \cdot 4000 \text{ miles}$$

$$\approx \frac{17441 \cdot \pi}{162.} = 338.225 \text{ miles}$$

$$s = \theta r \approx (0.027 \pi)(4000) \approx 108$$
. mile ≈ 339.292 miles